Extensions 1→N→G→Q→1 with N=Dic11 and Q=C23

Direct product G=NxQ with N=Dic11 and Q=C23
dρLabelID
C23xDic11352C2^3xDic11352,186

Semidirect products G=N:Q with N=Dic11 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic11:1C23 = C2xD4xD11φ: C23/C22C2 ⊆ Out Dic1188Dic11:1C2^3352,177
Dic11:2C23 = C22xC11:D4φ: C23/C22C2 ⊆ Out Dic11176Dic11:2C2^3352,187
Dic11:3C23 = C22xC4xD11φ: trivial image176Dic11:3C2^3352,174

Non-split extensions G=N.Q with N=Dic11 and Q=C23
extensionφ:Q→Out NdρLabelID
Dic11.1C23 = C22xDic22φ: C23/C22C2 ⊆ Out Dic11352Dic11.1C2^3352,173
Dic11.2C23 = C2xD44:5C2φ: C23/C22C2 ⊆ Out Dic11176Dic11.2C2^3352,176
Dic11.3C23 = C2xD4:2D11φ: C23/C22C2 ⊆ Out Dic11176Dic11.3C2^3352,178
Dic11.4C23 = D4:6D22φ: C23/C22C2 ⊆ Out Dic11884Dic11.4C2^3352,179
Dic11.5C23 = C2xQ8xD11φ: C23/C22C2 ⊆ Out Dic11176Dic11.5C2^3352,180
Dic11.6C23 = Q8.10D22φ: C23/C22C2 ⊆ Out Dic111764Dic11.6C2^3352,182
Dic11.7C23 = D4:8D22φ: C23/C22C2 ⊆ Out Dic11884+Dic11.7C2^3352,184
Dic11.8C23 = D4.10D22φ: C23/C22C2 ⊆ Out Dic111764-Dic11.8C2^3352,185
Dic11.9C23 = C2xD44:C2φ: trivial image176Dic11.9C2^3352,181
Dic11.10C23 = C4oD4xD11φ: trivial image884Dic11.10C2^3352,183

׿
x
:
Z
F
o
wr
Q
<